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The eccentricity connectivity polynomial of a molecular graph G is defined as EC(G,x) = SaÎV(G)x
ecc(a), where ecc(a) is 

defined as the length of a maximal path connecting a to another vertex of G. In this paper this polynomial is computed for 
an infinite class of fullerenes. 
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1. Introduction  
 
Fullerenes are molecules in the form of cage-like 

polyhedra, consisting solely of carbon atoms. Fullerenes 
Cn can be drawn for n = 20 and for all even n ≥ 24. They 
have n carbon atoms, 3n/2 bonds, 12 pentagonal and n/2 - 
10 hexagonal faces. The most important member of the 
family of fullerenes is C60 [1,2]. 

Mathematical chemistry is a branch of theoretical 
chemistry for discussion and prediction of the molecular 
structure using mathematical methods without necessarily 
referring to quantum mechanics. Chemical graph theory is 
an important tool for studying molecular structures [3,4]. 
This theory had an important effect on the development of 
the chemical sciences. This paper reflects an attempt for 
studying fullerenes by using graph theory.  

We now recall some algebraic definitions that will be 
used in the paper. Throughout this paper, graph means 
simple connected graph. The vertex and edge sets of a 
graph G are denoted by V(G) and E(G), respectively. If x, 
y Î V(G) then the distance d(x,y) between x and y is 
defined as the length of a minimum path connecting x and 
y. The eccentric connectivity index of the molecular graph 
G, xc(G), was proposed by Sharma, Goswami and Madan 
[5]. It is defined as xc(G) = SuÎV(G)degG(u)ecc(u), where 
degG(x) denotes the degree of the vertex x in G and ecc(u) 
= Max{d(x,u) | x Î V(G)}, see [6] for details. The radius 
and diameter of G are defined as the minimum and 
maximum eccentricity among vertices of G, respectively. 

We now define the eccentric connectivity polynomial 
of a graph G, ECP(G,x), as ECP(G,x) = 
SaÎV(G)degG(a)xecc(a). Then the eccentric connectivity index 
is the first derivative of ECP(G, x) evaluated at x = 1. 

Our notation is standard and mainly taken from 
standard books of graph theory. We encourage the reader 
to consult [9-14] for background material, as well as, 
basic computational techniques.  

 
 

2. Main results and discussion 
 
The aim of this section is to compute ECP(G,x), for an 

infinite family of fullerenes. Before going to calculate this 
polynomial for fullerenes, we must compute ECP(G,x), for 
some well-known class of graphs.  

Example 1. Consider the fullerene graph C20, Fig. 1. 
One can see that the for every x V(G)Î ,  ecc(x) = 5 and 
so ECP(C20,x) = 60x5.  

 
 

Fig. 1. The fullerene graph C20. 

 
A molecular graph G is said to be k-regular, if for 

every vertex x of G, degG(x) = k. It is easy to see that the 
EC polynomial of a k- regular graph G is equal to 
ECP(G,x) = kSaÎV(G)x

ecc(a). So, the EC polynomial of a 
fullerene graph G is ECP(G,x) =3 SaÎV(G)x

ecc(a). On the 
other hand, ECP(G, 1) = 2|E(G)| and ECP(G,0) = 0. 

Example 2. Suppose Kn denotes the complete graph 
on n vertices. Then For every nv V(K )Î , deg(v) = n-1  

and so ecc(v)=1. This implies that ECP(Kn,x) = n(n-1)x. 
Example 3. Let Cn denotes the cycle of length n. If n 

is even then for every i, the i-th row of distance matrix of 

Cn is 
}i

1, 2,..., 0,..., (n -1) / 2, n / 2, (n -1) / 2,..., 2,1   . Also, if n is 
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odd then the i-th row of distance matrix is equal to 
}i

1,2,...,0 ,..., (n -1) / 2, (n -1) / 2,..., 2,1.   Thus, 
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Example 4. Let Sn be the star graph with n + 1 

vertices, Fig. 2. The central vertex is denoted by x and 
others vertices by u1, u2,, …, un. Then for every 1 ≤ i , j ≤ 
n, we have d(x , ui) = 1 and d(ui , uj) = 2. So, ECP(Sn 
,x)=nx2+nx. 

Example 5. A wheel Wn is a graph of order n which 
contains a cycle of order n, and for which every vertex in 
the cycle is connected to other graph vertices, Figure 3. 
Suppose the central vertex is denoted by x and the others 
by u1,u2,,…,un. Then for every 1 ≤i, j≤ n we have d(x , ui) 
= 1, d(ui , ui-1) = 1, d(ui , ui+1) = 1 and d(ui , uj) = 2j(j ≠ i - 
1, i+1. So, ECP(Wn,x) = 3nx2 + nx. 

Example 6. Consider a complete n-partite graph G = 

n21 m,...,m,mM containing v = |V(G)| vertices. By definition 

of this graph, Fig. 4, V = V (G) can be partitioned into 
subsets V1, V2, ... Vn of V such that for every i, 1 ≤ i ≤ n, 
there is no edge between the vertices of Vi. By a direct 
calculation, one can see that  
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Fig. 2. The star graph with n+1 vertices. 
 

 
 

Fig. 3. The wheel graph with n+1 vertices. 
 

 
Fig. 4. The complete n-partite graph. 

 
In Table 1, the EC polynomials of C10n fullerenes, Fig. 

5, are computed, 2 ≤·n ≤ 7. If n ≥ 8 then we have the 
following general formula for the EC polynomial of this 
class of fullerenes. 

Theorem. The EC polynomial of C10n, n ≥ 8, 
fullerenes are computed as follows: 

ECP(C10n,x) = 30
1x
1x

x
n

n

-
-

. 

Proof. From Fig. 5, one can see that there are two 
types of vertices of fullerene graph C10n. These are the 
vertices of the central and outer pentagons, and, other 
vertices of C10n. Obviously, we have: 

 
Vertices ecc(x) No. 

The Type 1 Vertices 2n - 1 10 
Other Vertices 2n-i (2≤ i ≤n) 10 

 
By using these calculations and Fig. 6, the theorem is 

proved.                                  
Some exceptional case are given in the following 

table: 
 

Fullerenes EC Polynomials 
C20 60x5 
C30 90x6 
C40 30x6+60x7+30x8 
C50 60x7+60x8+30x9 
C60 72x8+72x9+36x10 
C70 60x8+30x9+30x10+30x11+30x12+30x13 

 
Table 1. Some exceptional cases of the fullerenes C10n.. 
 
 
3. Conclusions 
 
Our calculation was done by a combination of 

HyperChem [15], TopoCluj [16] and GAP [17]. We first 
draw the molecule by HyperChem and them load it into 
TopoCluj. We compute its distance matrix by TopoCluj 
and then upload this matrix into a GAP program given in 
the end of this paper. In this way, we obtain a very fast 
method for our calculations. 
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Fig. 5. The molecular graph of the fullerene C10n. 

 

u v

 
 

Fig. 6. The value of ecc(x) for vertices of central and 
outer pentagons. 

 
 
 
 

 
 

A GAP Program for Computing EC Polynomial of a Graph 
 
f=function(M) 

local s, t, g, gg, u, i, j, a, N; 

s:=[]; t:=0; g:=[]; gg:=[]; u:=[], N:=[]; 

for i in M do 

Add(N, Maximum(i)); 

od; 

Sort(N); 

for i in N do 

  for j in N do  

     if j=i then 

Add(g,j); 

fi; 

od; 

AddSet(gg,g);g:=[]; 

od; 

Print("AM Polynomial = "); 

for i in [1..Length(gg)-1] do 

Print(Length(gg[i]),"x^");Print(gg[i][1]);Print("+"); 

u:=u+Length(gg[i])*(gg[i][1]); 

od; 

a:=Length(gg); Print(Length(gg[a]),"x^");Print(gg[a][1],"\n"); 

u:=u+Length(gg[a])*(gg[a][1]); 

Print("\n"); 

return;  

end; 
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